A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina.
نویسندگان
چکیده
Although the purine adenosine acts as an extracellular neuromodulator in the mammalian CNS in both normal and pathological conditions and regulates sleep, the regulation of extracellular adenosine in the day and night is incompletely understood. To determine how extracellular adenosine is regulated, rabbit neural retinas were maintained by superfusion at different times of the regular light/dark and circadian cycles. The adenosine level in the superfusate, representing adenosine overflow from the retinas, and the adenosine level in retinal homogenates, representing adenosine content, were measured using HPLC with fluorescence detection in the absence or presence of blockers of adenosine transport and/or extracellular adenosine synthesis. We report that darkness, compared with illumination, increases the level of extracellular adenosine, and that a circadian clock also increases extracellular adenosine at night. In addition, we show that the darkness-evoked increase in the level of extracellular adenosine results primarily from an increase in the conversion of extracellular ATP into adenosine, but that the clock-induced increase at night results primarily from an increase in the accumulation of intracellular adenosine. We also show that a slightly hypoxic state increases adenosine content and overflow to an extent similar to that of the clock. Our findings demonstrate that the extracellular level of adenosine in the mammalian retina is differentially regulated by a circadian clock and the lighting conditions and is maximal at night under dark-adapted conditions. We conclude that adenosine is a neuromodulator involved in both circadian clock and dark-adaptive processes in the vertebrate retina.
منابع مشابه
Circadian and light-driven regulation of rod dark adaptation
Continuous visual perception and the dark adaptation of vertebrate photoreceptors after bright light exposure require recycling of their visual chromophore through a series of reactions in the retinal pigmented epithelium (RPE visual cycle). Light-driven chromophore consumption by photoreceptors is greater in daytime vs. nighttime, suggesting that correspondingly higher activity of the visual c...
متن کاملCircadian clock regulation of pH in the rabbit retina.
Although it is generally accepted that the acid-base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the mammalian nervous system have shown that neuronal activity can result in significant shifts in pH. In the mammalian retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus invest...
متن کاملInfluence of N-Phthaloyl GABA on the Circadian Rhythms of Lipid Peroxidation and Antioxidants in Wistar Rats under Constant Light
N-Phthaloyl GABA was administrated daily (50 mg/Kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied under constant light (LL) conditions. Delayed acrophase of TBARS and advanced acrophase of antioxidants (GSH, CAT and ...
متن کاملRetinal morphology and retinomotor response in Caspian kutum (Rutilus frisii subsp. kutum)
In this study, the morphology and organization of the retina of Caspian kutum and fish response to ambient light as retinomotor reaction was investigated. The Rutilus frisii subsp. kutum is an anadromous fish and important native fish specimen of Caspian Sea. The specimens were obtained from Shahid Ansari Teleost Reproduction and Culture center (Guilan province, Iran). For light and dark adapta...
متن کاملCircadian time-keeping system in birds: A review
In contrast to the highly centralised circadian clock in mammals, where the master clock resides in the anterior hypothalamic nucleus, as suprachiasmatic nucleus (SCN), the avian circadian timing machinery is more complicated with 3 circadian clock centresthe retina, hypothalamus and pineal. These three autonomous circadian oscillators interact with one another to regulate overt circadian rhyth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2005